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1 Introduction

Five years have passed since we wrote our first survey on Kolmogorov complexity
and its applications [10]. This essay is not meant to be an exhaustive survey of the
subject, not even of the recent results; that is done thoroughly in our forthcoming
book [13] which will appear very soon. Here, we would like to convey to our reader
some appealing philosophical ideas by just picking up some pretty shells deposited
on the shore by the sea of applications of Kolmogorov complexity. We hope these
ideas will be useful or, at least, enjoyable to our reader.

We give preference to ideas and applications that were not (well) covered by
our previous articles [10, 11], either due to our ignorance at the time or because
the results are new. We also prefer those results that have deeper philosophical or
methodological implications. During our narrative, we often venture into strange
lands where we are only amateurs or even total strangers. Thus our views might not
be completely conventional, but we do hope they are novel and interesting.

Due to space limitation, we refer the reader to [11, 13] for definitions and basic
facts of Kolmogorov complexity. For the purpose of reading this article at a concep-
tual level, it is sufficient to know that Kolmogorov complexity of a finite string =
is simply the length of the shortest program, say in FORTRAN! encoded in binary
bits, which prints # without any input. C(z) is the Kolmogorov complexity of z;
K(z) is the prefix Kolmogorov complexity of z where the program for # must be
self-delimiting.

2 Should we prefer elementary proofs?

Probabilistic or information—theoretic style proofs have enjoyed major successes in
combinatorics and computer science. Our thinking about proofs in computer science
parallels the following comments of Kolmogorov [8] about information theory:

The real substance of the entropy formula [based on probabilistic assump-
tions about independent random variables] ... holds under incomparably weaker
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and purely combinatorial assumptions... Information theory must precede
probability theory, and not be based on it. By the very essence of this disci-
pline, the foundations of information theory must have a finite combinatorial
character.

From a practical viewpoint the real issue is whether elementary arguments must
always be more tedious. We demonstrate through one example that elementary
proofs (using Kolmogorov complexity) are not only more intuitive, but also easier.
Kolmogorov complexity based arguments, although nonconstructive, are essentially
combinatorial in nature without probabilistic assumptions. We use d(S) to denote
the number of elements in set S.

A family D = {Dy, D, ..., D;} of subsets of N = {1,2,...,n} is called a distin-
guishing family for N if for any two distinct subsets M and M’ of N there exists an
i (1 < i < j) such that d(D; N M) is different from d(D; N M'). Let f(n) denote the
minimum of d(D) over all distinguishing families for N. The coin-weighing problem
is to determine f(n). It is known that

£(n) < (2n/logn)[1 + O(loglogn/logn)]. (1)

Equation 1 was independently established by B. Lindstrém in 1965 and D.G. Can-
tor and W.H. Mills in 1966. P. ErdSs and A. Rényi [5], L. Moser [15], and N.
Pippenger [16] have established the following Theorem 1 using various probabilistic
and information theory methods (second moment method).

Fix an encoding of the 2™ subsets of N such that each subset is encoded by a
binary string of length n. Simplifying notation, we write M as the encoding of M.

Theorem 1 f(n) > (2n/logn)[1 + O(loglog n/logn)].
ProOF. Choose M such that C(M|D,...,D;) > n. Let d; = d(D;) and m; =

d(D; N M). By elementary estimates [13], m; is within range d;/2 + O(1/d;Iog d;).
Thus, for 1 <1 < j, m; can be described using its discrepancy with d;/2, hence

1
C(m;|D;) < 3 logd; + O(loglogd;) < % logn + O(loglogn).
Since D is a distinguishing family, given D, the values my, ..., m; determine M:

n < C(MIDs, .., Ds) < Ol e, my| D, . D5) < Ty (3 logm + O(loglog ).

This implies the theorem. O

3 The Grue Emerald Paradox

For about two thousand years philosophers have worried about the problem of in-
ductive reasoning. On the one hand, it seems common sense to assume that people
learn in the sense that they generalize from observations by learning a ‘Law’ that
governs not only the past observations, but will also apply to the observations in
the future. In this sense induction should ‘add knowledge’.



Yet how is it possible to acquire knowledge which is not yet present? If we have
a system to deduce a general law from observations, then this law is only part of the
knowledge contained in this system and the observations. Then, the law does not
represent knowledge over and above what was already present, but it represents in
fact only a part of that knowledge.

In [7], N. Goodman described the grue emerald paradoz. Let h be the hypothesis
that all emeralds are green. Let k be the hypothesis that all emeralds examined
before the the year of 2000 are green and all emeralds examined after 2000 will be
blue. Goodman called this color ‘grue’. Then both hypotheses are totally confirmed
by the experiments so far. How do we develop some tools, or philosophy, to prefer h
than k? People have been resorting to farfetched arguments, for example, to prefer
time-independent hypothesis (h) than the time-dependent hypothesis (k).

Francis Bacon, in Sylve Sylvarum 337, 1627, formulates the power of induction
as follows: “The eye of the understanding is like the eye of the sense; for as you may
see great objects through small crannies or levels, so you may see great axioms of
nature through small and contemptible instances.”

Mathematics has come up with an induction principle which has an impecca-
ble derivation, yet allows us to estimate the relative likelihood of different possible
hypotheses—which is impossible with the commonly used Pearson-Neyman testing.
Consider a discrete sample space Q. Let D, Hy, H,,... be a countable set of events
(subsets) of Q. H = {Hy, H,, ...} is called hypotheses space . The hypotheses H;
are exhaustive (at least one is true). From the definition of conditional probability,
that is, P(4|B) = P(A N B)/P(B), it is easy to derive Bayes’ formula (rewrite
P(AN B) in two different ways):

_ P(D|H;)P(H;)
If the hypotheses are mutually exclusive (H; N H; = 0 for all ¢, j), then
P(D) =) P(D|H:)P(H;).

Despite the fact that Bayes’ rule is just a rewriting of the definition of conditional
probability and nothing more, it is its interpretation and applications that are most
profound and caused much bitter controversy during the past two centuries. In
Equation 2, the H;’s represent the possible alternative hypotheses concerning the
phenomenon we wish to discover. The term D represents the empirically or otherwise
known data concerning this phenomenon. The term P(D), the probability of data
D, may be considered as a normalizing factor so that ), P(H;|D) = 1. The term
P(H,) is called the a priori probability or initial probability of hypothesis H;, that
is, it is the probability of H; being true before we see any data. The term P(H;|D)
is called a posteriori or inferred probability

The most interesting term is the prior probability P(H;). In the context of
machine learning, P(H;) is often considered as the learner’s initial degree of beliefin
hypothesis H;. In essence Bayes’ rule is a mapping from a priori probability P(H;)
to a posteriori probability P(H;|D) determined by data D. In general, the problem
is not so much that in the limit the inferred hypothesis would not concentrate on



the true hypothesis, but that the inferred probability gives as much information
as possible about the possible hypotheses from only a limited number of data. In
fact, the continuous bitter debate between the Bayesian and non-Bayesian opinions
centered on the prior probability. The controversy is caused by the fact that Bayesian
theory does not say how to initially derive the prior probabilities for the hypotheses.
Rather, Bayes’ rule only tells how they are to be updated. In the real world problems,
the prior proabilities may be unknown, uncomputable, or even conceivably non-
existent. (What is the prior probability of use of a word in written English? There
are many different sources of different social backgrounds living in different ages.)
This problem would be solved if we can find a single probability distribution to use
as the prior distribution in each different case, with approximately the same result
as if we had used the real distribution. Surprisingly, this turns out to be possible up
to some mild restrictions.

Consider theory formation in science as the process of obtaining a compact de-
scription of the past observations. The investigator observes increasingly larger ini-
tial segments of an infinite binary sequence X as the outcome of an infinite sequence
of experiments on some aspect of nature. To describe the underlying regularity of X,
the investigator tries to formulate a theory that governs X, consistent with past ex-
periments. Candidate theories (hypotheses) are identified with computer programs
that compute binary sequences starting with the observed initial segment.

First assume the existence of a prior probability distribution g (actually a mea-
sure) over the continuous sample space @ = {0,1}*. Denote by p(z) the probability
of a sequence starting with z. Given a previously observed data string S, the infer-
ence problem is to predict the next symbol in the output sequence, that is, extrapo-
lating the sequence S. In terms of the variables in Equation 2, H, is the hypothesis
that the sequence under consideration continues with a. Data Dg consists of the
fact that the the sequence starts with initial segment S. Thus, for P(H;) and P(D)
in Formula 2 we substitute p(H,) and p(Ds), respectively, and obtain:

_ K(Ds|Ha)p(Ha)
#HalDs) = u(Ds)

We must have pu(Ds|H,) = 1 for any a, hence,

p(Ha|Ds) = fj—-f% 3)

Generally, we denote p(H,|Ds) by p(a|S). In terms of inductive inference or
machine learning, the final probability u(a|S) is the probability of the next sym-
bol being a, given the initial sequence S. Obviously we now only need the prior
probability p to evaluate u(al|S).

The idea is to approximate the unknown proper prior probability yu. Without
too much loss of generality we may as well assume that the measure u is enumerable.
That means, there is a Turing machine T which computes a total function ¢(z, k)
such that ¢(z,k + 1) > ¢(z, k) and limg_, o ¢(z, k) = p(z). If p is recursive then it
is also enumerable, but not necessarily the converse. It turns out that the class of
all enumerable measures contains a universal measure, denoted by M, such that for
all p in this class there exists a constant ¢ > 0 such that M(z) > cu(z) for all z. We



say that M dominates p. We also call M the a priori probability, since it assigns
maximal probability to all hypotheses in absence of any knowledge about them.

Now instead of using Formula 3, we estimate the conditional probability p(y|z)
that the next segment after z is y by the expression

M(zy)

Now let g in Formula 3 be an arbitrary computable measure. This case includes
all computable sequences. If the length of y is fixed, and the length of = grows to
infinity, then it can be shown [18] that

M(y)/M(z)
1(y)/p(z) ’

with p-probability one. In other words, the conditional a priori probability is almost
always asymptotically equal to the conditional probability. It has also shown by
Solomonoff that the convergence is very fast and if we use Formula 4 instead of the
real value Formula 3, then our inference is almost as good. We also know that

—logM(z) = K(z) + O(log K (z)), (5)

That means that M assigns high probability to simple objects and low probability
to complex or random objects. We now come to the punch line: Bayes’ rule using
the universal prior distribution yields Occam’s Razor principle. Namely, if several
programs could generate S0 then the shortest one is used (for the prior probability),
and further if SO has a shorter program than S1 then S0 is preferred (that is,
predict 0 with higher probability than predicting 1 after seeing S). Bayes’ rule via
the universal prior distribution also gives the so-called indifference principle in case
S0 and S1 have roughly equal length shortest programs which ‘explain’ S0 and 51,
respectively. The Goodman’s grue emerald paradox disappears under this paradigm.

Scientists formulate their theories in two steps: firstly a scientist, based on scien-
tific observations, formulate alternative hypotheses, and secondly a definite hypoth-
esis is selected. The second step is the subject of inference in statistics. Statisticians
have developed many different principles to do this, like Occam’s Razor principle, the
Maximum Likelihood principle, various ways of using Bayes’ formula with different
prior distributions. No single principle turned out to be satisfiable in all situations.
Philosophically speaking, Solomonoff’s approach presents an ideal way of solving
induction problems. However, due to the non-computability of the universal prior
function, such a theory cannot be directly used. Some approximation is needed in
the real world applications.

Now we will closely follow Solomonoff’s idea, but substitute a ‘good’ computable
approximation to M(z). This results in Rissanen’s Minimum Description Length
principle [17]. Rissanen not only gives the principle, more importantly he also gives
the detailed formulae on how to use this principle. This made it possible to use the
MDL principle. The MDL principle can be intuitively stated as follows:

Minimum Description Length Principle. The best theory to ezplain a set
of data is the one which minimizes the sum of



o the length, in bits, of the description of the theory;
o the length, in bits, of data when encoded with the help of the theory.

We now develop this MDL principle from Bayes’ rule using the universal distri-
bution M(z), assuming that P is enumerable. From the Bayes’ Formula 2, we must
choose the hypothesis H such that P(H|D) is maximized. First we take the negative
logarithm on both sides of Equation 2, we get

—log P(H|D) = —log P(D|H) — log P(H) + log P(D)

log P(D) is a constant and hence ignored. Maximizing the P(H|D) over all possible
H’s is equivalent to minimizing —log P(H|D), or minimizing

—log P(D|H) —log P(H)

Now to get the minimum description length principle, we only need to explain above
two terms in the sum properly. According to Solomonoff, when P is enumerable,
then we approximate P by M. The prior probability P(H) is set to M(H) =
2~ K(H)£0(log K(H))  where K (H) is the prefix-complexity of H. That is, —log P(H)
is about the length of 2 minimum prefiz code, or program, of hypothesis H.

A similar argument applies to term —log P(D|H). That is, 2~ K(PIH)+0(leg K(D|H))
is a reasonable approximation of P(D|H). The term —log P(D|H), also known as
the self-information in information theory and the negative log likelihood in statis-
tics, can now be regarded as the number of bits it takes to redescribe or encode .D
with an ideal code relative to H. In different applications, the hypothesis H can
mean many different things, such as decision trees, finite automata, Boolean for-
mulae, or a polynomial. In general statistical applications, one assumes that H is
some model H(6) with a set of parameters 6 = {61,...,60;} of precision ¢, where
the number k may vary and influence the descriptional complexity of H(6). In such
case, we minimize

—log P(D|6) — log P(6).

Let’s consider one example. For each fixed k, k = 0,...,n—~1, let fi be the best
polynomial of degree k, fitted on points (z;, %) (1 < 7 < n), which minimizes the
error

n
error(fx) = Z(fk(z,) — )%
=1
Assume each coefficient takes ¢ bits. So fi is encoded in ck bits. Let us assume the
commonly used Gaussian distribution of the error on y;’s. Thus, given that fi is the
true polynomial,
Pr(y, ..., ¥nlfi) = I exp(=O((fi(=:) — %:)%))-

The negative logarithm of above is ¢’ - error(fi) for some computable ¢’. The MDL
principle tells us to choose fi, k € {0,...,n— 1}, which minimizes ck +c’- error(f).

4 Valiant learning under computable distributions?

Valiant’s model [20] provides an excellent framework for studying learnability. Sub-
sequent investigations show many problems intractable (NP-complete) under the



original model. Can we adapt the it to obtain a model where more concepts are
polynomial time learnable? The philosophy here is that maybe humans just learn a
concept under some restricted class of distributions, like computable ones (those in
our textbooks). Kolmogorov complexity and the Solomonoff-Levin universal distri-
bution allows us to systematically develop a theory of Valiant-style learning under
all (semi) computable distributions.

All distributions we have a name for: the uniform distribution, normal distribu-
tion, geometric distribution, Poisson distribution, are computable (with computable
parameters). Hence the change from distribution-free learning to computable-distributio
free learning is not too restrictive. It turns out that there is a nice mathematical
structure in our computable-distribution-free learning case. For example, we can
prove completeness results in the sense that there is a single (universal) distribution
m such that if a concept class is learnable under this single distribution, they it is
learnable under all computable distributions. Formally,

Theorem 2 A concept class C is polynomially learnable under the universal distri-
bution m(z), iff it is polynomially learnable under each computable distribution P,
provided the sample is drawn according to m.

See [12] for details. In the continuous case, we even have a stronger theorem
without needing to sample according to the universal distributions.

Theorem 3 A concept class C over a continuous sample space is learnable under
M iff it is learnable under each computable measure.

5 Can we abandon pumping lemmas?

In the current undergraduate formal language courses, it seems that the cumbersome
pumping lemmas constitute an important part of the teaching. It may be argued that
such lemmas not only obstructs students’ ability of viewing the real substance of the
proof, but also give them a bad habit (like what ‘goto’ did to FORTRAN). Further,
the usual pumping lemmas do not hold conversely which adds more confusion. Often
students need un-aesthetic add-ons like “marked pumping lemma”.

It turns out that Kolmogorov complexity is just the right tool to characterize
all regular languages. It simply makes our intuition of ‘finite state’-ness of these
languages rigorous and easy to apply.

Theorem 4 (Regular KC-Characterization) Let L C &%, x = x1x3... be the
characteristic sequence of L, = {y|zy € L}. The following statements are equivalent.
(i) L is regular.

(i) 3cp, Yz € T*, Vn, C(x1:m|n) < cr, ¢ depending only on L.

(iii) 3er, Ve € %, VYn, C(x1:) < C(n) + cr, cr, depending only on L.

(iv) 3er, Yz € T, Vn, C(x1:m) < logn + cr, ¢z depending only on L.

Proor. (i) — (ii) — (iii) — (iv) are simple. To show (iv) — (i), we need,

Claim 5 For each constant ¢ there are only finitely many one-way infinite binary
strings w such that, for all n, C(wy.s) < logn +c.



D.W. Loveland [14] credits the following result to A. Meyer: For each constant ¢
there are only finitely many w € {0, 1} with C(w1:n|n) < ¢ for all n and each such
w is a recursive real. G.J. Chaitin [3] improved this to C(w1.n) < logn + c.

By (iv) and Claim 5, there are only finitely many distinct x’s associated with the
z’sin L*. Define the right-invariant equivalence relation ~ by z ~ 2’ if x = x’. This
relation induces a partition of ©* in equivalence classes [z] = {y : y ~ =}. Thus there
are only finitely many [z]’s, which implies that L is regular by the Myhill-Nerode
theorem: define a finite automaton using one state for each equivalent class, and
define transition functions accordingly. D

See [13] for a complete proof, and for CFL’s. As a corollary, we have

Lemma 6 (KC-Regularity) Let L be regular and L, = {y: 2y € L}. For each
z, if y is the nth string is in L,, then C(y) < C(n) + ¢, for some constant c.

ExaMmpLE 5.1 Consider {0F1% : k > 1}. Set = = 0™ with C(n) > logn. Then
lexicographically first string in L, is 1%, but C(1") = Q(logn). Thus KC-Regularity
Lemma implies that {0¥1% : k > 1} is not regular.

Comment. Intuitively, when a finite automaton reads 1%, it has to remember =,
but C(n) > logn, a finite automaton cannot encode these logn bits.

ExaMPLE 5.2 Prove that L = {ze®w : z,w € {0,1}* — {€}} is not regular. Set
z = (01)*, where C(n) > logn. Then, the lexicographically first word in L, is
y = (10)™0. Hence, C(y) = Q(logn), contradicting the KC-Regularity Lemma.

6 Loschmidt’s Paradox

The second law of thermodynamics says that in any thermodynamic process that
proceeds from one equilibrium state to another, the entropy of the system + envi-
ronment either increase or remains unchanged. Fundamentally, this law says that
any system, without external influence, goes to maximum disorder.

In 1872, Ludwig Boltzmann (1844-1906), lectured on the foundation of modern
statistical thermodynamics. When he mentioned his interpretation of the second
law, the physicist Joseph Loschmidt rose to protest. Loschmidt said that the laws
governing the motions of all particles are symmetric with respect to time. Thus any
system that goes from order to chaos could be made orderly once again by reversing
the momentum of each particle. This will not affect the total kinetic energy of
the system. In defiance Boltzmann pointed his finger at Loschmidt and said, “You
reverse the momenta.” [2]. Loschmidt in fact raised the following question: if the
system is deterministic, how could its entropy be increased? In fact, Shannon entropy
(H = ~ 3, p,logp,) or, equivalently, Boltzmann-Gibbs entropy (S = klog W) for
a deterministic system cannot increase, because the number of possible states (W)
does not increase in a deterministic system by Liouville’s Theorem.

With Shannon’s information theory, one cannot directly define the entropy of
a single microscopic state. Sometimes such a definition is actually desired. For
instance, in the high temperature superconductivity research, some material like
Cu0; loses magnetic moment below some critical temperature. In such state, the
nuclear spins in CuO; all line up as in Figure 1.
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Figure 1: Atomic spin in CuQ, at low temperature

The state represented by Figure 1 is considered to have low entropy, or zero
entropy. It is necessary to define entropy for such particular state, and not involve
a whole ensemble as information theoretic entropy. It is not convenient to use the
Shannon entropy in this situation since we might also like to know the entropy of the
state with all arrows up, as in Ferromagnetism, or all arrows down. Or two arrows
up and two arrows down alternatively, etc.

The above discussion naturally leads to the following new definitions of entropy
for physical systems: algorithmic entropy and physical entropy. As we will demon-
strate, the new definitions are not only quantitatively and philosophically correct,
but also more direct, intuitive and elementary than the Shannon entropy.

Definition 1 The algorithmic entropy of a microscopic state of a system is the
Kolmogorov complexity of that state.

The difficulties we had with Shannon entropy disappear in the new definition.
Algorithmic entropy of a system can increase, even for a deterministic system, simply
because the system evolves over time from regular initial states to more random
states. Thus the second law is naturally and rigorously explained with algorithmic
entropy. Since most states are random, a random system or even a deterministic
system approaches and stays on average in states with maximum entropy. Note
that second law was never meant to be true all of the time. The upshot is that the
probability of the second law not to hold is very very low.

ExAMPLE 6.1 Regular microscopic states now automatically have well-defined low
algorithmic entropies. The state of CuQO; in Figure 1 naturally has low algorithmic
entropy since it can be described by a trivial program of a few bits:

repeat forever : print T; print |.

Other easily describable states, such as with all arrows up or alternatively with two
arrows up and two arrows down, also naturally have constant algorithmic entropy.

EXAMPLE 6.2 [This example is taken from D. Halliday and R. Resnick, Fundamen-
tals of Physics, 31d extended edition, 1988, page 526] Algorithmic entropy consid-
erations lie at the heart of adiabatic demagnetization, an important method that
has been used with great success to achieve record low temperatures (near zero
Kelvin). In this method, a sample such as a chrome-alum salt (whose atoms may
be considered as tiny magnets) is placed in an insulating enclosure at the lowest
attainable temperature. A strong magnetic field is applied by an external magnet so
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Figure 2: Adiabatic demagnetization to achieve low temperature

that the tiny atomic magnets line up, forming a very ordered state, as Figure 2 (a)
shows. Then the magnet is removed so that its field is no longer present. By ther-
mal agitation, the atomic magnets now assume random orientations, as in Figure 2
(b). Kolmogorov complexity, i.e., algorithmic entropy, associated with the atomic
alignments has clearly increased.

Since the system is adiabatically isolated, no heat can leave or enter. Since the
process of removing the magnetic field is almost reversible, there can be no change
in entropy in this thermally isolated reversible process. Thus the increase of entropy
associated with the randomizing of the directions of the atomic magnets must be
compensated with the spontaneous lowering of the temperature of the specimen,
decreasing the entropy due to thermal agitation by the same amount.

We further justify Definition 1. Given a thermodynamic ensemble £, we prove
that Shannon entropy and algorithmic entropy are quantitatively the same.

Theorem 7 Let P(s) be the probability that the system is in state s € €. If proba-
bilities P(s) can be recursively generated, then, up to a constant additive factor,

H(P)=) P(s)K(s), (6)

se€
where H(P) = — Y, .¢ P(s)log P(s) is the Shannon entropy.
Proor. By the Noiseless Coding Theorem,
H(P)< Y P(s)K(s).

seE
By a constructive version of the Shannon-Fano code, K(s) < —log P(s) + O(1). It
follows that

> P(s)K(s) < H(P) +0(1).

sc€
[13] contains all the complex details. O

Equation 6 shows that algorithmic entropy quantitatively approximates the old
Shannon entropy. Thus algorithmic entropy naturally inherits the successes and
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results of the Shannon entropy. As an example, we prove one such result, the
Sackur-Tetrode equation [24].

Ideal gas or Boltzmann gas is a convenient tool to study statistical thermodynam-
ics. Consider a 3-dimensional container with N identical (ideal) gas molecules. Each
molecule is considered as an elastic ball with no internal freedom. Imagine we divide
the entire container volume into a 3-dimensional array of small cells, each capable
of containing one molecule. At any fixed time, a specific cell contains zero or one
molecule. To specify N molecules, we use a phase-space of 6N dimensions. A partic-
ular microscopic state corresponds to just one point P = (p1,- -, psN,q1, ", q3N)
in phase-space, where p;’s are coordinates of the positions of N molecules and g¢;’s
specify their momenta. This is called a Hamiltonian system. (In Boltzmann en-
tropy, S = klogW, W is the number of points in our phase-space corresponding
to the macroscopic state of entropy S. Liouville’s Theorem says any region in the
phase-space does not change in volume as the system evolves with time. Thus as a
system evolves, W, therefore S, stays constant. S correctly specifies the equilibrium
entropy, but it lacks the ability of specifying the dynamic changes of the system, as
prescribed by the second law.)

Theorem 8 (Sackur-Tetrode Equation) Let V be the volume of the container, and
AV be the volume of each cell. Let A, be the basic unit we record momentum q.
Then the entropy of a typical microscopic state of N ideal molecules is given by the
following formula:

|4 3 mkT

ProOF. We design a program of above size to specify any given microscopic
state, assuming N is given. The positions of molecules can be specified as follows:
There are V/AV cells and N molecules. To specify the distances of the molecules,
we need Zfi d; bits, where Y d; = V/AV. Maximizing this, we conclude that at
most N log 757 bits are needed to describe the positions of the N molecules.

The expected value of each component of momentum g of a molecule is (mkT)*/2,

. . /2,
thus to specify the momentum of such a molecule requires SIOg@AZq)l-i bits. In

total, we need at most %N log (’Zk{f, bits to specify the momenta of N molecules. O
q

Algorithmic entropy is a definition from the system point of view. It defines
the complexity of a system at a particular time. If we look at a system from an
observer’s angle, W.H. Zurek [24] defined the following ‘physical entropy’.

Definition 2 Physical entropy of a system, given observed data d of the system, is
H;i+ K(d), where K(d) is the Kolmogorov complexity of the observed data d, and
H, is the conditional Shannon entropy or our “ignorance” of the system given d.

Physical entropy reflects the fact that measurements can increase our knowledge
about a system. If the system is in a regular state, physical entropy can decrease
as we make more and more measurements. In the beginning, we have no knowledge
about the state of system, therefore the physical entropy reduces to Shannon entropy
and is maximized reflecting our total ignorance. As we make more measurements, if
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Figure 3: Physical Entropy

the state is not regular, then we cannot achieve compression and the physical entropy
remains high. However, if the system is in a regular state, then measurements
increases our knowledge about the system and we might be able to compress the
data, and the system becomes less unknown and hence physical entropy deminishes.
The two pictures in Figure 3 describe these situations.

Notice that the physical entropy in Definition 2 cannot increase if we make no
measurements. However, physical entropy can increase if we made sufficient mea-
surements at different time steps as the system evolves and becomes more and more
disordered. It is important to distinguish the increase of K(d) with measurements in
Figure 3 and the increase of algorithmic entropy with time. In the former case, we
have more and more data at hand to describe, therefore K(d) grows until it describes
the systems totally. During this process, the system is assumed to be static with the
arrow of time frozen. In the latter case, the system evolves to become more and more
chaotic with time, according to the second law. Thus if we make sufficient amount of
measurements to the system at some later time step, K (d) will be greater, reflecting
the fact that the system is now more disordered, or, has greater algorithmic entropy.
This increase will stop at the equilibrium of the system. Zurek [25] shows how to
use physical entropy to explain Maxwell’s demon.

7 Why is our world compressible?

P.C.W. Davies [4] asked the interesting question why the world is compressible.
Science, in a sense, may be considered as compression of experimental data. Com-
pression means knowing and comprehending. Why is mathematics compressible to
a few axioms? Why is physics (approximately) compressible to a few laws? Why are
we humans compressible to a string over alphabet {4, C, G, T}? Why is the universe
compressible, and hence comprehensible, at all?

E. Wigner [22] called this phenomenon “the unreasonable effectiveness” of math-
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ematics in the natural sciences. We are so used to our environment, that above
questions probably have never puzzled most of us. If you do not realize the sub-
tleties of these questions, listen to R.W. Hamming [Coding and Information Theory,
Prentice-Hall, 1987]:

I have tried, with little success, to get some of my friends to understand my
amazement that the abstraction of integers for counting is both possible and
useful. Is it not remarkable that 6 sheep plus 7 sheep makes 13 sheep; that
6 stones plus 7 stones make 13 stones? Is it not a miracle that the universe
is so constructed that such a simple abstraction as a number is possible? To
me this is one of the strongest examples of the unreasonable effectiveness of
mathematics. Indeed, I find it both strange and unexplainable.

Is it unreasonable to imagine a total chaotic universe? As we know, a randomly given
string (or universe) is most likely to be not algorithmically compressible. How come
ours happens to be algorithmically compressible, hence knowable? More remarkably,
our universe is not only compressible, it is indeed very feasibly compressible, since
mankind is good at discovering nature’s algorithms. It took only one man and one
apple and 13 years to invent Newton mechanics (and calculus); it took only one
man and his life time to discover evolution theory; it took only one man and a few
years to understand relativity; it took only a few more men and a few more years
to formulate quantum mechanics. Yet, we obtain so much from so little: we sent
men to the moon with a few laws of Newton; we release gigantic nuclear energy with
Einstein’s E = mc?; our TV’s, radios, X ray, and police radar all depend on just
4 lines of Maxwell equations; and with quantum mechanics and superstring theory,
we hope that they explain everything on earth, and in heaven.

Let us look at things from a different perspective. Life, in some sense, also evolves
in the direction of minimizing its ‘programs’, and indeed this turns out to be not only
possible but also extremely effective. A DNA molecule can be regarded as a long
character string over {4, C, G, T'}. In order to encode proteins, it needs to encode 20
amino acids, plus a ‘begin’ and an ‘end’ command to signify the start and the end of
an encoding of a protein. Thus to encode each of the 22 different objects, one needs
at least three characters which give 64 possible combinations, while two characters
only give 16 combinations. Using more than three characters is obviously redundant.
Remarkably, indeed Nature uses precisely three characters to encode an amino acid
or a ‘begin’ or an ‘end’ command, not more and not less. (Note, we do not claim that
such sequences have maximum Kolmogorov complexity, in fact they do not.) More
remarkably, Nature also dynamically minimizes its programs through Darwinian
selection. To demonstrate this point, we describe an experiment performed by S.
Spiegelman [19], discussed in D.K. Kondepudi [9]. A Qg virus replicates using the
resources of the cell it infects. Since intra-cellular environment is usually complex
and malicious, for successful replication, this virus carries in its RNA the algorithm
to synthesize proteins that form a protective coat. Such RNA has about 4500 units.
Spiegelman placed such RNA of 4500 units in a friendly environment conducive to
replication and let it evolve. Soon, mutations with smaller number of units that
could replicate faster arose and replaced the original RNA. This process continued
until the RNA was reduced to about 220 units. This is an application of the MDL
principle above.

The current laws of physics of this universe only started to hold at approximately
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10~%s of the big bang. According to the best cosmological theories, the universe
began in an exceedingly simple state. Is this the reason that our current universe is
highly compressible? Using a binary string to encode the universe, we can ask the
question: what is the Kolmogorov complexity of the world? C.H. Woo [23] argues
that it maybe premature to claim that the world is indeed highly (algorithmically)
compressible. Even the universe would be maximally random, then our part of
the universe could be regular and compressible, since every long string has short
compressible substrings. Either way, this will stay unknown, since a random string
cannot be proven to be random effectively. Relying on quantum mechanics, R.
Penrose in his popular book [Emperor’s New Mind, Oxford University Press, 1989]
has conjectured that the human brain has capabilities superior to that of a Turing
machine. Does God really permit us to learn more about Him via proofs imagined
by our minds than proofs listed by our hands?

Among other interesting philosophical issues relating Kolmogorov complexity to
physics are: Thermodynamics of computing and Maxwell’s demon (can one make a
perpetual machine of second kind?) [1, 24], chaos theory (can a deterministic system
be chaotic?) [6], visual distance, etc. The interesting book [25] contains a wealth of
related papers. [13] tries to present a complete treatment. [21] contains five surveys
on applications of Kolmogorov complexity to structural complexity theory.
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